a2 United States Patent

US009152438B2

(10) Patent No.: US 9,152,438 B2

Wu (45) Date of Patent: Oct. 6, 2015
(54) OBJECT LINKING BASED ON A (56) References Cited
DETERMINED LINKER ORDER
U.S. PATENT DOCUMENTS
(75) InVentOI‘ Zhao-Ming wu’ Beljlng (CN) 6’789’255 Bl * 9/2004 Pedrlzettl et al """"""" 717/169
. 7,210,141 B1* 4/2007 Nathanetal. 717/168
(73) Assignee: QUALCOMM Incorporated, San 7,529,779 B2 5/2009 Herle et al.
Diego, CA (US) 7,689,982 B1* 3/2010 Chenetal.ccccoeeenee. 717/168
8,141,069 B2* 3/2012 Koehler 717/165
I 8,214,821 B1* 7/2012 Bartel et al. .. 717/168
(*) Notice: Subject. to any dlsclalmer,. the term of this 2002/0144254 A1* 1012002 Owada ... N
patent is extended or adjusted under 35 2004/0117782 Al* 6/2004 Lo 717/165
U.S.C. 154(b) by 94 days. 2005/0039177 Al* 2/2005 Burke 717/165
2005/0278715 Al* 12/2005 Herleetal. . . 717/162
. 2006/0200815 Al* 9/2006 Liccccooeen. .. 717/168
(21) Appl. No: 13/641,243 2006/0265705 AL* 11/2006 HOI .eooerocorcerrce. 717/169
(22) PCT Filed: Apr. 19, 2010 (Continued)
(86) PCT No.: PCT/CN2010/000524 FOREIGN PATENT DOCUMENTS
§ 371 (©)(1), EP 0472812 Al 3/1992
(2), (4) Date: Oct. 15,2012 OTHER PUBLICATIONS
(87) PCT Pub. No.: W02011/130869 ARM, Using Scatter-loading description files, 2001, pp. 1-33.*
PCT Pub. Date: Oct. 27, 2011 (Continued)
(65) Prior Publication Data Prir.nary Examil.wr — Thuy Dao
Assistant Examiner — Mongbao Nguyen
US 2013/0042225 Al Feb. 14,2013 (74) Attorney, Agent, or Firm — Norton Rose Fulbright US
LLP
(51) Imt.ClL
GOGF 9/44 (2006.01) (57) ABSTRACT
GO6F 9/45 (2006.01) Example embodiments relate to a mechanism for linking
GOG6F 9/445 (2006.01) objects to obtain an executable file. In particular, example
(52) U.S.CL embodiments include a mechanism that determines a linker
CPC ... GOGF 9/44521 (2013.01); GOGF 8/68 order for a plurality of objects included in a version of an
(2013.01); GOGF 9/44536 (2013.01); GO6F executable file and a mechanism that generates a scatter load-
9/4428 (2013.01) ing file for the version of the executable file, the scatter
(58) Field of Classification Search loading file ordering the plurality of objects using the linker

CPC GOGF 9/4428; GOG6F 9/44521; GOGF 8/54;
GOGF 8/71; GO6F 8/24; GOG6F 8/68; GO6F
9/44536

See application file for complete search history.

order. Example embodiments also include a mechanism that
links the plurality of objects using the scatter loading file to
create the version of the executable file.

15 Claims, 6 Drawing Sheets

400 405

fibraries refersnced by the objects

‘ Parse ohjects to identify object |'/W 410

Parse referanced librardes fo identily 420
Hbrary objects to be included in exacutable

Determine ordering of the objects and library 430
objects based on properiies of the linker

‘ Oudput linker order information If 440

:D e 44
Stop .

US 9,152,438 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0050762 Al* 3/2007 Chenetal.ccco.o.. 717/169
2007/0079306 Al 4/2007 Qumei
2007/0089108 Al* 4/2007 Chenetal. ..o 717/168

2007/0130565 Al* 6/2007 Fanetal. . . T17/173
2007/0294683 Al* 12/2007 Leeetal. . .. 717/162
2008/0098377 Al* 4/2008 Bamak 717/162

4/2008 Kilbaneetal. 717/162
2008/0117991 Al 5/2008 Peddireddy et al.

2008/0184220 Al* 7/2008 Chenetal. 717171
2008/0301658 Al* 12/2008 El-Kersh 717/165
2009/0144708 Al* 6/2009 Deedwaniyaetal. ... 717/140
2009/0172338 Al 7/2009 Eker et al.

2009/0328024 Al 12/2009 Lietal.

2008/0098378 Al*

2010/0077387 Al* 3/2010 Callaghanetal. 717/140
2010/0169875 Al* 7/2010 Stewart ... 717/170
OTHER PUBLICATIONS

Binghua Duan’s Linux & Android Blog, Scatter Loading Mechanism
in ADS, 2006, pp. 1-5.*

Adam Dunkels, Run-time Dynamic Linking for Reprogramming
Wireless Sensor Networks, 2006, pp. 1-14.*

Brian Gough, An Introduction to GCC, 2004, pp. 7-15.*

Weiyi Ge, Object Link Structure in the Semantic Web, 2010, pp.
257-270.*

David M. Beazley, The Inside Story on Shared Libraries and
Dynamic Loanding, 2001, pp. 90-97.*

International Search Report and Written Opinion received in PCT
Application No. PCT/CN2010/000524, mailed Jan. 20, 2011, pp. 11.
Carl Von Platen, et al., “Feedback Linking: optimizing object code
layout for updates,” 2006, pp. 2-11, <URL: http://portal.acm.org/
citation.cfm?id1134650.1134653&collACM&dIACM
&CFID75634853&CFTOREN 32556789>.

De Bus, et al., “Link-time optimization of ARM binaries,” Publica-
tion date 2004, On pp. 211-220, <URL: http://portal.acm.org/cita-
tion.cfm?id997163.997194& coll ACM&dAIACM&CFID75634853
&CFTOREN 32556789>.

De Sutter, et al., “Link-time compaction and optimization of ARM
executables,” ACM transactions on Embedded Computing Systems
(TECS),2007, vol. 6 (1), <URL: http://portal.acm.org/citation.
cfm?id1210268.1210273&coll ACM&dAIACM&CFID75634853
&CFTOREN 32556789>.

* cited by examiner

U.S. Patent Oct. 6, 2015 Sheet 1 of 6 US 9,152,438 B2

100 ‘\‘
120 \
i
Machine-Readable
Storage Medium
Linker Order | 1122
Uelarmining Instructions

™ Procesaor — Seatler L{)a{jing File | 124
Generating Instructions

MG~

Linking Instructions

FiIG. 1

US 9,152,438 B2

Sheet 2 of 6

Oct. 6, 2015

U.S. Patent

< DIA

BIBMULIL]
T
e L
TR
syEpin
29z 4 . .
BOINGC] JUBIILY T
08z~
Oye
7
N a1
. g suttonsy) Bugeieusg BRENOa%s
sucnanasu) Bu . f s
s._ ptisiniisiie] BaENDP3 oberpeg arepdry _. snomag |~ 252
7 i paxul)
|/ By Bupeo)
Q87 -1 s msieg |
uv ||
ong e AT ot ™ e
rd] — T :
e e Rz A
se_@ammm polao | [Sopewgu Momﬁw i cre \ ol o1z
= T JRPI0 I — T 1518 ‘
py yez zez oz N 4w |
0z SUONIIeH; Bullsususg .
B4 Buipao sepeog suoganisy) U ~ |12 127
1BpIry Jeol
ﬁ

91z

U.S. Patent Oct. 6, 2015 Sheet 3 of 6 US 9,152,438 B2

(s y

Determine linker order for objects included
in first varsion of executable e

Generate scatier loading file for
all objects using the linker order

320

Link first version of executable file — 330
and distribute to client base
Determine linker order for objects included e 340
in second version of executable file
Generate scalter loading file for e 350
all objects using the linker order
360

Link second version of execuiabls file

U.S. Patent Oct. 6, 2015 Sheet 4 of 6 US 9,152,438 B2

Parse objecls to identify object ~ 440
libraries referenced by the abjects

Parse referenced libraries o identify | 420
fibrary objects to be included in execulable

Determine ordering of the objects and library | —— 430
objects based on properties of the linker

k. 4

Cutput inker order information -~ 440

. J

(stop),xm 445

FIG. 4

U.S. Patent

Oct. 6, 2015 Sheet 5 of 6 US 9,152,438 B2

800

Receaive linker order information o1
C . e B2
Determine size of sach object |

Select next object in inker arder information 530

Enough ™

Y PACS rezmaimﬂgﬁ\
axacution '
region?

~ 550

Creale new execution region in scatier loading file

560

Insart abject as last entry in current execution region

v ff”Mme objests

o place in scalter
loading file?

U.S. Patent

Oct. 6, 2015

Sheet 6 of

,_mm\\

6 US 9,152,438 B2

‘,;.-’-' _—v——"""‘-*—.\\

800
’” 810 -850
input h.o d o @ o
Ohjaots @ 8.0 \\?‘j) .
ﬂ o 620 L 860
;3?2;2: RO | a.0] colbo|daleo 1O (2.0 colfo |boleo
information | RW | 8.9 c.o|bo|dolen Rwla.olcolio |boleo
o ®)
) ﬂ [,«f“* 5360 Tl o &70
%o.az.'l Oxl Load O=d
%)mcz_ Gl i ?XEC:[Gl
a.o {+BO} 2.0 [HR3}
oL {FRO) -
B RO flo §i§3§
¥ 3 b.o {+RD)
BXESCR O
Scatter ¢ d.o [4RO) ?xac:z +0
Loading ' e.o {¥RO} N e.o {+R3}
F“es BXEC3 +8 EXECI +0
{ a.a {FEF) a.o {+RW}
. a.o {+EW}) oo {+HRR)
Exmcd +8 EXBCE +0
¢ B.oo {+RR} t £.0 {(+ER)
d.oc {+RW} .o [+BR}
; =.0 {+RW} ; 2.0 {(FRW}
¥ 3
l pa 648 P 680
3.0 (+*RO}[.0 (*RW) 3.0 [*RO a0 (*RW)
Linked <o RO oo (FRW) @ co (FROY| oo (+RW)
Exacutahies .o RO} bo (+RW) | | |fo(+RGy] fo (+RW)
d.o (+RO)| 2.0 (+RW) b.o HROY| bo (+RW)
a0 (RO} eo (FRW) a0 (+RO)| eo (RW)
(f‘“ 890
Update Remove d.o
Package fnsernd f.o after c.o

FiIG. 6

US 9,152,438 B2

1

OBJECT LINKING BASED ON A
DETERMINED LINKER ORDER

BACKGROUND

Computer programs, which may be implemented in the
form of software or firmware executable on a computing
device, are susceptible to errors or faults that cause incorrect
or unexpected results during execution. Such errors or faults
are more commonly known as “bugs.” In situations where a
bug will affect performance, render a product unstable, or
affect the usability of the product, the developer may find it
advisable to release a software or firmware update to correct
the problem. A developer may also release an update to add
additional features or improve performance of the product. In
general, the update includes a number of instructions used to
transform the existing version stored on the user device to the
updated version.

In atypical implementation, a developer transmits the soft-
ware or firmware update package to the user over a wired or
wireless network. For example, when the user device is a
mobile phone, portable reading device, or other portable
device, the user may receive the update over a cellular or other
wireless network. Similarly, when the user device is a desktop
or laptop computer, the user may receive the update over a
wired network.

Regardless of the transmission medium used to transmit
the update to the user, it is desirable to minimize the size of the
update package. By making the update package as small as
possible, the developer may reduce the amount of time
required to transmit the update to the user and to install the
update onthe user’s device, thereby resulting in an increase in
the user’s satisfaction. Similarly, minimizing the size of the
update package reduces bandwidth usage, thereby reducing
costs to both the user and the network provider. Existing
solutions employ a number of techniques in an attempt to
generate an update package of minimal size, but, ultimately,
could be improved to further decrease download time, band-
width usage, and installation time.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, like numerals refer to like
components or blocks. The following detailed description
references the drawings, wherein:

FIG. 1is a block diagram of an example computing device
including a machine-readable storage medium encoded with
instructions for linking a plurality of objects using a scatter
loading file generated based on a determined linker order;

FIG. 2 is a block diagram of an example system including
a computing device for generating an update package and a
client device for receiving and installing the update package;

FIG. 3 is a flowchart of an example method for generating
an update package based on two versions of an executable,
where each version of the executable is linked using a scatter
loading file generated based on a determined linker order;

FIG. 41s a flowchart of an example method for determining
a linker order for a plurality of objects to be included in an
executable file;

FIG. 5 is a flowchart of an example method for generating
a scatter loading file using a linker order; and

FIG. 6 is a block diagram of an example operation flow for
generating an update package based on two versions of an
executable file, where each version is linked using a scatter
loading file generated based on a determined linker order.

DETAILED DESCRIPTION

As detailed above, existing solutions for generating an
update package could be improved to further decrease the size

10

15

20

25

30

35

40

45

50

55

60

65

2

of the resulting update package. Thus, as described below,
various example embodiments relate to a process for linking
executable files in a manner that reduces the size of a subse-
quently-generated update package.

In particular, in some embodiments, a linker order may first
be determined for a plurality of objects to be included in a
version of an executable file. This linker order may identify
the ordering of the plurality of objects if they were to be
placed in a single execution region of the file. A scatter load-
ing file may then be generated using the determined ordering
of the plurality of objects. Finally, a linked executable file
may be obtained by linking the objects using the scatter
loading file. By applying this procedure to each version of the
executable file, the size of update packages for updating from
one version of the executable to the next may be minimized.
In particular, since each executable file will follow a similar
object ordering, the changes required in the update package
will be minimized, thereby reducing the size of the package
and the installation time. Additional embodiments and appli-
cations of such embodiments will be apparent to those of skill
in the art upon reading and understanding the following
description.

In the description that follows, reference is made to the
term, “machine-readable storage medium.” As used herein,
the term “machine-readable storage medium” refers to any
electronic, magnetic, optical, or other physical storage device
that contains or stores executable instructions or other data
(e.g., a hard disk drive, flash memory, etc.).

Referring now to the drawings, FIG. 1 is a block diagram of
an example computing device 100 including a machine-read-
able storage medium 120 encoded with instructions for link-
ing a plurality of objects using a scatter loading file generated
based on a determined linker order. Computing device 100
may be, for example, a desktop computer, a laptop computer,
a server, a workstation, or the like. In the embodiment of FIG.
1, computing device 100 includes a processor 110 and a
machine-readable storage medium 120.

Processor 110 may be a central processing unit (CPU), a
semiconductor-based microprocessor, or any other hardware
device suitable for retrieval and execution of instructions
stored in machine-readable storage medium 120. Machine-
readable storage medium 120 may be encoded with execut-
able instructions for determining a linker order, generating a
scatter loading file based on the determined linker order, and
linking the objects using the generated scatter loading file.
Thus, processor 110 may fetch, decode, and execute the
instructions 122, 124, 126 encoded on machine-readable stor-
age medium 120 to implement the functionality described in
detail below.

In particular, machine-readable storage medium 120 may
include linker order determining instructions 122, which may
determine a linker order for a plurality of objects to be
included in a particular version of an executable file. Linker
order determining instructions 122 may determine the order-
ing of the objects if the objects were linked by a particular
linker and, more specifically, the ordering of the objects when
the linker is required to make a decision on its own regarding
the order in which objects should be placed. As described
below, this object ordering may then be provided as input to
scatter loading file generation instructions 124.

Each object processed by linker order determining instruc-
tions 122 may be a file comprising a number of executable
instructions, which may be, for example, in machine code
format. The objects (sometimes referred to as “binaries”) may
be obtained by, for example, compiling or assembling a
source code file using a compiler or assembler suitable for the
particular programming language used by a developer. As a

US 9,152,438 B2

3

specific example, when the linker to be used is the Advanced
Reduced Instruction Set Machine (ARM) linker, the objects
may be in Executable and Linkable Format (ELF). Other
suitable objects will be apparent to those of skill in the art
depending on the specific linker to be employed.

Furthermore, each object may include external references
to one or more libraries, which may each include one or more
objects for implementing commonly-utilized routines. For
example, a particular object may reference a standard library
used to implement a custom data type or provide some other
preconfigured functionality. When the linker to be used is the
ARM linker, the object libraries may be in ELF format or,
alternatively, provided in an archive file containing a collec-
tion of ELF files. Other suitable libraries referenced by the
object files and file formats for those libraries will be apparent
to those of skill in the art depending on the particular compiler
or assembler used in generation of the objects.

In operation, linker order determining instructions 122
may read the plurality of objects and run a series of instruc-
tions to determine the ordering assigned to the objects by a
particular linker. This ordering may correspond to, for
example, the ordering of the objects if the objects were to be
placed in a single execution region (also known as an inner
link ordering). In other words, linker order determining
instructions 122 may determine the ordering assigned by the
linker when the linker is required to make an ordering deci-
sion between two or more objects located in the same execu-
tion region.

In some embodiments, instructions 122 may run a simula-
tion to determine the ordering in which the objects would be
placed by the particular linker if they were provided to the
linker as input. For example, instructions 122 may first iden-
tify the objects to be included in a particular linked executable
and then identify any library objects referenced by the
objects. Linker order determining instructions 122 may then
determine the ordering of each of the objects and referenced
library objects within a linked executable.

In executing such a simulation, linker order determining
instructions 122 may determine the ordering of the objects
using object ordering properties of the applicable linker.
These object ordering properties may identify an order in
which objects are placed in a executable linked by the par-
ticular linker when the linker is required to make an ordering
decision between two objects. For example, when the linker is
an ARM linker, linker order determining instructions 122
may be aware that the ordering for objects within a particular
region is based on, in order: (1) attributes of each object; (2)
object names in alphanumeric order; and (3) positioning in
the input list. Furthermore, in an ARM linker, objects
included in referenced libraries are generally placed after the
objects provided as input to the linker. Other suitable factors
used in ordering objects within a linked executable will be
apparent to those of skill in the art depending on the particular
linker.

As an alternative to a simulation, linker order determining
instructions 122 may determine the ordering by launching the
linker one or more times using the objects to be included in
the linked executable. For example, linker order determining
instructions 122 may launch the linker using two objects until
an ordering is determined for every pair of objects. In particu-
lar, linker order determining instructions 122 may provide
two objects as input to the linker, specifying that both objects
should be placed in the same execution region (e.g., by using
a simple scatter loading file).

As a specific example, when there are three objects to be
ordered, A, B, and C, linker order determining instructions
122 may launch the executable using the following combina-

10

15

20

25

30

40

45

50

55

60

65

4

tions: (1) AB: (2) AC; and (3) BC. Linker order determining
instructions 122 may then determine the order assigned to
each of the objects in each of the resulting executables. In this
manner, linker order determining instructions 122 may gen-
erate an ordered list of objects based on the ordering of each
pair. This procedure may be used for any group ofn objects by
launching the linker using a number of distinct pairs equal to
n! divided by (2*(n-2)!).

Regardless of the method used to determine the linker
order, after linker order determining instructions 122 obtain
the linker order, the order may be provided to scatter loading
file generating instructions 124. Using the provided linker
order, scatter loading file generating instructions 124 may
generate a scatter loading file to be used in linking the execut-
able file in the order determined by linker order determining
instructions 122. It should be noted that, although commonly
used in connection with an ARM linker, the term “scatter
loading file” is not limited to ARM linkers as described
herein. Rather, as used herein, a scatter loading file may
include any set of parameters provided as input to a particular
linker to specify an ordering of objects in the linked execut-
able.

As an example, scatter loading file generating instructions
124 may first read the order received from linker order deter-
mining instructions 122. Scatter loading file generating
instructions 124 may then generate an output file to be used to
instruct the linker to place the objects in the executable in the
specified order. For example, when the linker is an ARM
linker, scatter loading file generating instructions 124 may
create a scatter loading file including a plurality of execution
regions. The ordering of the objects within and between each
of the execution regions may be the same as the ordering
received from linker order determining instructions 122.

Thus, as an example, when the linker to be used is an ARM
linker, a particular scatter loading file may include execution
regions ordered first based on the attribute (e.g., read-only
code, then read-only data, then read-write code, then zero-
initialized data, etc.). Within sets of objects including the
same attribute, the objects may be ordered in alphanumeric
order based on the ASCII character sequence. Finally, when
two or more objects have the same attribute and name, the
objects may be ordered in the scatter loading file based on a
position to be used in the input list provided to the linker.

Scatter loading file generating instructions 124 may pro-
vide the generated scatter loading file to linking instructions
126, which may launch the linker program using the objects
and the scatter loading file as input. For example, when the
linker is an ARM linker, linking instructions 126 may launch
the “armlink” command, providing each of the objects as
input and identifying the scatter loading file using the “-scat-
ter” input parameter. Linking instructions 126 may then
obtain the outputted linked executable, which may contain an
object ordering corresponding to the ordering determined by
linker order determining instructions 122.

By applying linker order determining instructions 122,
scatter loading file generating instructions 124, and linking
instructions 126 to each version of an executable file (e.g., a
first version including a first plurality of objects and a second
version including a second plurality of objects), each version
may be based on the linker ordering for the objects. In par-
ticular, because the ordering within the scatter loading file
reflects the actual linker inner order, the ordering within
execution regions of the linked executable may be identical to
the ordering in the scatter loading file. For example, when
using a typical scatter loading file with the ARM linker, the
ordering of objects within a particular execution region may
be different from the ordering contained in the scatter loading

US 9,152,438 B2

5

file, as the ARM linker applies an inner section ordering to
each execution region. By mapping the ordering of the scatter
loading file to the inner ordering, embodiments disclosed
herein ensure that the ordering in the scatter loading file is the
same as the ordering in the linked executable. By applying
this process to each version of the executable, the differences
between each version of the executable may be minimized,
thereby decreasing the size of the update package.

FIG. 2 is a block diagram of an example system including
a computing device 200 for generating an update package and
a client device 260 for receiving and installing the update
package. As illustrated, the system may include a computing
device 200, a network 250, and a client device 260. As
described in detail below, reference is made to an ARM
Linker and related file types. It should be apparent, however,
that the embodiment of FIG. 2 may be adapted to any linker
type that allows for user specification of an ordering of
objects.

As with computing device 100 of FIG. 1, computing device
200 may be, for example, a desktop computer, a laptop com-
puter, a server, a workstation, or the like. Computing device
200 may include a processor (not shown) for executing
instructions 210, 220, 230, 240. Instructions 210, 220, 230,
240 may be encoded on a machine-readable storage medium
(not shown) for retrieval and execution by the processor.

Linker order determining instructions 210 may include an
Executable and Linkable Format (ELF) parser 211, an archive
(AR) parser 212, a linker simulator 213, and an object order
collector 214. Each of these components may be imple-
mented in the form of executable instructions encoded on a
machine-readable storage medium of computing device 200.

ELF parser 211 may receive a plurality of objects 215 as
input and, in response, determine an identity of each object
(e.g., a file name or other identifier). In addition, ELF parser
211 may identify the attributes of each area within an object.
For example, a particular object may include read-only code,
read-only based data, read-only data, read-write code, based
data, other initialized data, and/or zero-initialized data.

ELF parser 211 may then parse the plurality of objects 215
to identify any object libraries referenced by the plurality of
objects 215. In particular, ELF parser may read through the
contents of each object 215 to identify any unresolved refer-
ences to external objects. For example, a particular object of
the plurality of objects 215 may reference a functionality
provided by one or more user-specified libraries 216 or stan-
dard libraries 217. As described below, AR parser 212 may
provide a listing of each of the objects contained in user-
specified libraries 216 and standard library 217. In response
to receipt of this listing, ELF parser 211 may determine a list
of library objects referenced by each of the objects 215
received as input. For example, if a.0 is included as an input
object 215 and references d.o and e.o in A.lib, ELF parser 211
may identify a.o, d.o, and e.o as the objects to be included in
the linked executable. After compiling a listing of each of the
objects included in and referenced by the plurality of objects
215, ELF parser 211 may forward the listing to linker simu-
lator 213, described in further detail below.

AR parser 212 may receive user-specified libraries 216 and
standard libraries 217 as input and, in response, identify any
objects included in each library. AR parser 212 may then
transmit each of the identified libraries to ELF parser 211,
which, as described above, may identify any objects in the
libraries 216, 217 referenced by the plurality of objects 215.

Linker simulator 213 may receive, as input, the objects
identified by ELF parser 211 and any libraries referenced by
those objects as parsed by AR parser 212. In response to
receipt of this listing of objects to be included in the execut-

10

15

20

25

30

35

40

45

50

55

60

65

6

able, linker simulator 213 may determine a linker ordering of
the objects. As an example, linker simulator 213 may use
object ordering properties of the particular linker to deter-
mine an order in which the linker would arrange the objects.
In some embodiments, each of the objects 215 may be placed
first, followed by any objects in the libraries 216, 217 in the
order that they are referenced in the objects 215.

As an example, when the linker is an ARM linker, linker
simulator 213 may first determine a grouping of the objects
based on their attributes (e.g., read-only, read-write, zero-
initialized, etc.). Linker simulator 213 may then determine an
ordering to be applied within each attribute group. For
example, linker simulator 213 may first order all objects 215
based, for example, on an alphanumeric ordering of the
objects, then order any objects in libraries 216, 217 in the
order they are referenced by the objects. Finally, when two
objects of a particular attribute type have the same name,
linker simulator 213 may order the objects based on the
position in which the objects will be located in the linker input
order.

Inthis manner, linker simulator 213 may determine a linker
order that corresponds to the linker inner ordering that would
be assigned to the objects if the linker was launched using the
group of objects. More specifically, the linker inner ordering
of'a linker may correspond to the ordering of objects within a
linked executable and linker simulator 213 may determine
this ordering by analyzing the input objects 215 and libraries
216, 217. In some embodiments, the ordering determined by
linker simulator 213 may also correspond to the order of the
objects 215 under the assumption that the objects were placed
in a single execution region. In other words, the linker order
may identify the ordering of the objects that would be applied
by the linker to resolve object placement conflicts in the
linked executable.

Object order collector 214 may receive the object ordering
information determined by linker simulator 213 and compile
this information into a linker order listing. The linker order
listing may be a sorted list identifying the position of each
object included in objects 215 or included in libraries 216,
217 and referenced by one of the objects 215. After compiling
the linker order information, object order collector 214 may
then output the determined linker order to scatter loading file
generating instructions 220.

In response to receipt of linker order information, scatter
loading file generating instructions 220 may be configured to
generate a scatter loading file used to link the objects 215,
216, 217 in the determined linker order. In particular, scatter
loading file generating instructions 220 may first determine a
size of each object 222 of the plurality of objects 215 and of
any referenced library objects 216, 217. Scatter loading file
generating instructions 220 may also determine a maximum
execution region size 224 by, for example, accessing stored
information regarding the linker to be used.

Scatter loading file generating instructions 220 may then
organize the plurality of objects into a number of execution
regions using the size of each object 222 and the maximum
region size 224. More specifically, scatter loading file gener-
ating instructions 220 may sequentially traverse the linker
order information, placing each identified object in an execu-
tion region until reaching a maximum size of the execution
region, at which point instructions 220 may create a new
execution region and continue with the process. In some
embodiments, at the end of the process, the resulting scatter
loading file may explicitly list every object 215 and all library
objects 216,217 referenced by the objects 215. Such embodi-
ments are advantageous, as they ensure that all objects 215,

US 9,152,438 B2

7

216, 217 are placed in the linked executable in the order
specified in the generated scatter loading file.

The generated scatter loading file may then be provided to
linking instructions 230. Linking instructions 230 may, in
response, trigger a linking procedure using the appropriate
linker. The linker may receive, as input, the scatter loading file
and objects and libraries 232, which may be the same as the
objects 215 and libraries 216, 217 provided to linker order
determining instructions 210. The linker may then generate a
linked executable using the ordering specified in the scatter
loading file. Because the ordering within execution regions of
the scatter loading file is the same as the linker inner ordering,
the objects in the resulting linked executable may be in the
same order as the scatter loading file.

Inresponse to receipt of the linked executable from linking
instructions 230, update package generating instructions 240
may generate an update package to update a previous execut-
able file 242 to the new version. In particular, update package
generating instructions 240 may generate an executable file
containing instructions for creating the new version of the
executable file using the previous executable file 242. For
example, the update package may contain a series of copy
commands indicating sections of the new version that are
identical to previous executable file 242 and a series of set
commands indicating data to be used for non-matching sec-
tions of previous executable file 242. Other suitable methods
for generating the update package will be apparent to those of
skill in the art.

Because previous executable file 242 may have been gen-
erated using instructions 210, 220, 230, the similarity in the
ordering of objects contained in the new and previous execut-
able files may be maximized. As a result, the number of
commands required to transform the previous executable file
242 to the new version will be minimized, thereby reducing
the total size of the resulting update package and minimizing
the installation time on the client device 260.

For example, when the new executable file only removes a
particular object from previous executable file 242, the linker
order determined by linker order determining instructions
210 will be the same, with the exception of the removal of the
particular object. As another example, when the new execut-
able file only adds a particular object to previous executable
file 242, the determined linker order will be the same, with the
exception of the addition of the particular object. As yet
another example, when the objects included in the new
executable file and previous executable file 242 are the same,
the determined linker order will be identical. As a result, in
each of these examples, the scatter loading file will be very
similar and the linked executables will therefore also be very
similar. As a result, changes reflected in the update package
will be minimal.

After generation of the update package, computing device
200 may prepare the update package for distribution to the
client base. For example, the two versions of the executable
file may be software or firmware included in a set of client
devices, which may include a particular client device 260.
Thus, client device 260 may be notified of the availability of
an update package and initiate a download of the update
package from computing device 200 via network 250, which
may be any packet-switched or circuit-switched network
(e.g., the Internet).

Client device 260 may be any computing device suitable
for execution of software and firmware. For example, client
device 260 may be a desktop or laptop computer, a mobile
phone, a portable reading device, or the like. Client device
260 may include software or firmware 264 to be updated and
an update installer 262 for installing a received update pack-

10

15

20

25

30

35

40

45

50

55

60

65

8

age. Upon receipt of an update package, client device 260
may execute update installer 262 to process the update pack-
age and modify the previous version of the software/firmware
264 using the instructions contained therein.

FIG. 3 is a flowchart of an example method 300 for gener-
ating an update package based on two versions of an execut-
able, each linked using a scatter loading file generated based
on a determined linker order. Although execution of method
300 is described below with reference to the components of
computing device 200, other suitable components for execu-
tion of method 300 will be apparent to those of skill in the art.
Method 300 may be implemented in the form of executable
instructions stored on a machine-readable storage medium,
such as a machine-readable storage medium included in com-
puting device 200.

Method 300 may start in block 305 and proceed to block
310, where computing device 200 may determine a linker
order for objects included in a first version of an executable
file. In particular, computing device 200 may read the plural-
ity of objects and execute a series of instructions to determine
the inner object ordering imposed on the objects by a particu-
lar linker. As an example, computing device 200 may run a
simulation to determine the ordering in which the objects
would be placed by the particular linker if they were provided
to the linker as input. In running this simulation, computing
device 200 may utilize known object ordering properties of
the particular linker. Alternatively, computing device 200
may launch the linker one or more times to determine how the
linker would order two or more objects when required to
make an ordering decision between the objects. Additional
implementation details for some embodiments are provided
above in connection with linker order determining instruc-
tions 122, 210.

After determining the linker order, method 300 may then
proceed to block 320, where computing device 200 may
generate a scatter loading file for the objects to be included in
the first version of the executable file using the linker order
determined in block 310. In particular, computing device 200
may organize the objects to be included in the executable into
a number of execution regions in an order corresponding to
the determined linker order. Additional implementation
details for some embodiments are provided above in connec-
tion with scatter loading file generating instructions 124, 220.

Method 300 may then proceed to block 330, where com-
puting device 200 may link the objects using the first scatter
loading file to create the first version of the executable file. In
particular, computing device 200 may launch the particular
linker providing, as input, the scatter loading file and each of
the objects considered in blocks 310 and 320.

After creating the first version of the executable file, the
executable may be distributed to a client base. For example,
the first executable may be firmware or software that is pre-
installed on client devices during a manufacturing or customi-
zation stage of the device. Alternatively, the first executable
may be installed on the client device by a user upon obtaining
the executable online or in a brick-and-mortar store.

Method 300 may then proceed to block 340, where com-
puting device 200 may determine the linker order for objects
to be included in a second version of an executable file. The
second version of the executable file may be, for example, a
software update, a firmware upgrade, or any other modifica-
tion of the first version of the executable file. In block 340,
computing device 200 may perform processing similar to that
of'block 310. In particular, computing device 200 may deter-
mine an inner ordering imposed by the linker of the objects
included in the second version by simulating the linking
process or by launching the linker.

US 9,152,438 B2

9

After determining the linker order, method 300 may pro-
ceed to block 350, where computing device 200 may generate
a scatter loading file for the objects to be included in the
second executable using the link order determined in block
340. The processing performed by computing device 200 in
block 350 may be similar to the processing of block 320.
Thus, computing device 200 may organize the objects to be
included in the second version of the executable into a number
of execution regions in an order corresponding to the linker
order determined in block 340.

Method 300 may then proceed to block 360, where com-
puting device 200 may link the second plurality of objects
using the second scatter loading file to create the second
version of the executable file. After the second executable file
is obtained through the linking process, method 300 may
proceed to block 370, where computing device 200 may
generate an update package based on the differences between
the first and second versions of the executable. In particular,
the update package may contain instructions to generate the
second version of the executable file using the first version of
the executable file.

Method 300 may then proceed to block 380, where com-
puting device 200 may distribute the update package to the
client base. For example, computing device 200 may transmit
the update package to client devices 260 via a network 250,
such as the Internet. Upon receipt of the update package, each
client device 260 may run the update package to upgrade the
software or firmware. Method 300 may then proceed to block
385, where method 300 may stop.

FIG. 4 is a flowchart of an example method 400 for deter-
mining a linker order for a plurality of objects to be included
in an executable file. Method 400 may be, for example, a
specific implementation of blocks 310 and 340 of FIG. 3.
Although execution of method 400 is described below with
reference to the components of computing device 200, other
suitable components for execution of method 400 will be
apparent to those of skill in the art. Method 400 may be
implemented in the form of executable instructions stored on
amachine-readable storage medium, such as a machine-read-
able storage medium included in computing device 200.

Method 400 may start in block 405 and proceed to block
410, where computing device 200 may parse the input objects
to identify object libraries referenced by the plurality of
objects. For example, computing device 200 may identify
each object of the plurality of objects that references one or
more user-specified or standard libraries and, for each such
object, identify the referenced libraries.

Method 400 may then proceed to block 420, where com-
puting device 200 may parse the identified object libraries to
identify the library objects to be included in the executable.
More specifically, computing device 200 may extract the
constituent objects from each library and compare the
extracted libraries to the object libraries identified in block
410. In this manner, computing device 200 may compile a
listing of all objects to be included in the executable file. This
listing of objects may include the input objects, referenced
objects in user-specified libraries, and referenced objects in
standard libraries.

Method 400 may then proceed to block 430, where com-
puting device 200 may determine the ordering of the input
objects and library objects. In some embodiments, computing
device 200 may determine the ordering of the objects based
on properties of the particular linker to be used. For example,
when the linker is an ARM linker, computing device 200 may
first determine a group of the objects based on their attributes
(e.g., read-only, read-write, zero-initialized, etc.). Computing
device 200 may then determine an ordering to be applied

10

15

20

25

30

35

40

45

50

55

60

65

10

within each attribute group based on an ASCII ordering of the
objects. Thus, in some embodiments, the linker order may be
determined based on an assumption that all objects are to be
included in a single execution region. Stated differently, com-
puting device 200 may determine an order applied by the
particular linker for all objects when the linker makes order-
ing decisions on its own (rather than making the decision
based on user instructions). The resulting list may be a list of
objects in an order to be identified in the scatter loading file.

After determining the object order in block 430, method
400 may proceed to block 440, where computing device 200
may output the linker order information for use in generating
a scatter loading file. Finally, method 400 may proceed to
block 445, where method 400 may stop.

FIG. 5 is a flowchart of an example method 500 for gener-
ating a scatter loading file using a linker order. Method 500
may be, for example, a specific implementation of blocks 320
and 350 of FIG. 3. Although execution of method 500 is
described below with reference to the components of com-
puting device 200, other suitable components for execution of
method 500 will be apparent to those of skill in the art.
Method 500 may be implemented in the form of executable
instructions stored on a machine-readable storage medium,
such as a machine-readable storage medium included in com-
puting device 200.

Method 500 may start in block 505 and proceed to block
510, where computing device 200 may receive the link order
information. In particular, as described in detail above, the
link order information may identify the ordering of input
objects and library objects to be included in the executable
file. Method 500 may then proceed to block 520, where com-
puting device 200 may determine the size of each object to be
included in the executable file. For example, computing
device 200 may determine a total number of bytes included in
each input object and library object included in the link order
information.

After determining the size of each of the objects, method
500 may proceed to block 530, where computing device 200
may select the next object identified in the linker order infor-
mation. Method 500 may then proceed to block 540, where
computing device 200 may determine whether sufficient
space remains in the current execution region for inclusion of
the object selected in block 530. When there is enough space
in the execution region, method 500 may skip to block 560,
described in detail below. Alternatively, when it is determined
that there is insufficient space in the current execution region
to include the currently-selected object, method 500 may
proceed to block 550.

In block 550, computing device 200 may create a new
execution region in the scatter loading file. In particular,
computing device 200 may create an execution region in a
current load region to specify a memory region for storage of
one or more objects during execution of the linked execut-
able. In creating the execution region, computing device 200
may identify a name of the region and a base address or
address offset from a previous execution region. In some
embodiments, in addition to creating a new execution region,
computing device 200 may also create a new load region that
contains one or more execution regions (including the execu-
tion region just created). A load region may be used to specify
a region of memory for use by one or more objects prior to
execution of the linked executable.

Method 500 may then proceed to block 560, where com-
puting device 200 may insert the currently-selected object as
the last entry in the current execution region. In particular,
computing device 200 may place the currently-selected
object into an input section, including an area description

US 9,152,438 B2

11

identifying the name of the object and area attributes of the
particular object. For example, in listing an object A with a
read-only attribute, computing device 200 may insert an
entry, “A.o (+R0O).” Similarly, in listing an object B with a
read-write attribute, computing device 200 may insert an
entry, “B.o (+RW).” Other suitable execution region entries
will be apparent to those of skill in the art depending on the
particular linker.

Method 500 may then proceed to block 570, where com-
puting device 200 may determine whether there are additional
objects to be placed in the scatter loading file. When it is
determined that there are additional objects, method 500 may
return to block 530 for processing of the next object in the
linker order information. Alternatively, when there are no
additional objects to be included in the scatter loading file,
method 500 may proceed to block 575, where method 500
may stop.

FIG. 6 is a block diagram of an example operation flow 600
for generating an update package based on two versions of an
executable file, each linked using a scatter loading file gen-
erated based on a determined linker order. Although operation
flow 600 is described below with reference to the components
of computing device 200, other suitable components for
implementation of operation flow 600 will be apparent to
those of skill in the art.

As illustrated in operation flow 600, computing device 200
may initially receive a first plurality of input objects 610 with
instructions to determine a linker order of the objects. As
illustrated, input objects 610 may include an object, a.o.,
which references two objects in libraries, b.o and e.o. Simi-
larly, input objects 610 may also include an object c.o, which
references an object in a library, d.o.

In block 1 of operation flow 600, computing device 200
may execute linker order determining instructions 210 to
determine linker order information 620 for the plurality of
input objects, in particular, linker order determining instruc-
tions 210 may first parse the user-provided objects, a.o and
c.0, to identify any object libraries referenced by these
objects. Linker order determining instructions 210 may then
parse the identified object libraries to identify any library
objects referenced by the user-provided objects and thereby
identify b.o, d.o, and e.o. Finally, linker order determining
instructions 210 may determine the linker order by first plac-
ing any user-provided objects 215 and then placing any ref-
erenced objects that are contained in libraries. Thus, in this
example, the resulting linker order information 620 may first
list all read-only code arranged in the order, a.o, c.0, b.o, d.o,
and e.o. The linker order information 620 may then list all
read-write code arranged in the order, a.o, c.0, b.o, d.o, and
e.o.

In block 2 of operation flow, computing device 200 may
execute scatter loading file generating instructions 220 to
populate a scatter loading file 630 using the linker order
information 620. In particular, as illustrated, scatter loading
file generating instructions 220 may first create an execution
region, EXEC1, including read-only code for a.o., c.0, and
b.o. Scatter loading file generating instructions 220 may then
create a second execution region, EXEC2, including read-
only code for d.o and e.o. Next, scatter loading file generating
instructions 220 may create a third execution region, EXEC3,
and populate it with a reference to the read-write code of a.o
and c.o. Finally, scatter loading file generating instructions
220 may create a fourth execution region, EXEC4, and
include a reference to the read-write code of'b.o, d.o., and e.o.
As illustrated each of the four execution regions may be
placed in the same load region using a relative addressing

20

30

35

40

45

50

12

scheme (i.e., each execution region is offset placed relative to
the previous region using the parameter “+07).

In block 3 of operation flow 600, computing device 200
may execute linking instructions 230 to link the objects 610
using the scatter loading file 630. In particular, linking
instructions 230 may launch the particular linker, providing
the objects 610 and the scatter loading file 630 as input. Thus,
as illustrated, the resulting linked executable 640 may be
ordered identically to the order of scatter loading file 630.

At some point after the generation of the first linked execu-
tion 640, a developer may determine that a software or firm-
ware update is advisable. Accordingly, the developer may
generate a new set of objects 650 that contain one or more
modified objects. In particular, as illustrated, the new set of
objects 650 may remove d.o, while adding a new object, f.o.
Accordingly, in block 4 of operation flow 600, computing
device 200 may again execute linker order determining
instructions 210 to determine linker order information 660 for
the objects 650. As illustrated, linker order determining
instructions 210 may output linker order information 660,
which will be arranged identically to order information 620,
but for the insertion of f.o after c.o and the deletion of d.o.

In block 5 of operation flow 600, computing device 200
may execute scatter loading file generating instructions 220 to
populate a scatter loading file 670 using the linker order
information 660. As illustrated, the order of scatter loading
file 670 is similar to that of scatter loading file 630, except for
the insertion of f.o in execution regions EXEC1 and EXEC4,
and the deletion of d.o from execution regions EXEC 2 and
EXECA4.

In block 6 of operation flow 600, computing device 200
may link the executable using the objects 650 and the scatter
loading file 670. In particular, computing device 200 may
launch the particular linker, providing objects 650 and scatter
loading file 670 as input. The resulting executable file 680 for
the second version may reflect the ordering of scatter loading
file 670.

After generation of the second version of the executable
file 680, computing device 200 may be ready to generate an
update package to create the second version 680 from the first
version 640. Thus, in block 7 of operation flow 600, comput-
ing device 200 may execute update package generating
instructions 240 to generate an executable file that uses first
version 640 as a baseline for generating second version 680.
An abstraction of such an update package is illustrated as
update package 690. In particular, update package 690 may
contain instructions to remove d.o and insert to after c.o.
Again, because the ordering of scatter loading files 630, 670
is based on the linker inner order, executables 640, 680 may
both be arranged in a similar manner. Accordingly, update
package 690 minimizes the need to shift the location of
objects when updating from first version 640 to second ver-
sion 680, thereby minimizing the update package size and
reducing installation time.

According to the foregoing, various embodiments relate to
generating and using a scatter loading file to link objects in an
order that remains consistent between versions of an execut-
able file. In this manner, differences between subsequent
versions of the executable file may be minimized, thereby
allowing for an update package of significantly reduced size.
Accordingly, software or firmware maintained on a client
device may be updated by transmitting the update package to
the client and applying the update package to the current
executable maintained on the client device in a manner that
minimizes transmission length, bandwidth usage, and instal-
lation time.

US 9,152,438 B2

13

I claim:

1. A method for linking executable files to minimize update
package size, the method comprising:

determining a first linker order for a first plurality of objects

in a plurality of execution regions in a first version of an
executable file, the first linker order indicating an inner
ordering imposed by a linker on the first plurality of
objects, wherein the first linker order is based on an
assumption that the first plurality of objects were placed
in a single execution region;

generating a first scatter loading file for the first version of

the executable file, the first scatter loading file grouping
the first plurality of objects into a plurality of execution
regions using the first linker order;

linking the first plurality of objects using the first scatter

loading file to create the first version of the executable
file;
determining a second linker order for a second plurality of
objects in a plurality of execution regions in a second
version of the executable file, the second linker order
indicating an inner ordering imposed by the linker on the
second plurality of objects, wherein the second linker
order is based on an assumption that the first plurality of
objects were placed in a single execution region;

generating a second scatter loading file for the second
version of the executable file, the second scatter loading
file grouping the second plurality of objects into a plu-
rality of execution regions using the second linker order;

linking the second plurality of objects using the second
scatter loading file to create the second version of the
executable file; and

generating an update package, the update package contain-

ing instructions to generate the second version of the
executable file using the first version of the executable
file.

2. The method of claim 1, wherein determining the firstand
second linker orders comprises, for each respective plurality
of objects:

identifying any object libraries referenced by the respec-

tive plurality of objects;

parsing the identified object libraries to identify any library

objects referenced by the respective plurality of objects;
and

determining a respective linker order of the respective plu-

rality of objects and the referenced library objects based
on object ordering properties of a particular linker used
for linking the first and second plurality of objects.

3. The method of claim 1, wherein determining the firstand
second linker order is based on an assumption that all objects
are to be included in a single execution region.

4. The method of claim 1, wherein generating the first and
second scatter loading files comprises, for each respective
executable file:

organizing the objects to be included in the respective

executable file into a plurality of execution regions,
wherein an ordering between and within the execution
regions follows the determined linker order.

5. A non-transitory machine-readable storage medium
encoded with instructions executable by a processor of a
computing device, the non-transitory machine-readable stor-
age medium comprising:

instructions for determining a first linker order for a first

plurality of objects in a plurality of execution regions for
a first version of an executable file, the first linker order
indicating an inner ordering imposed by a linker on the
first plurality of objects, wherein the first linker order is

10

15

20

25

30

35

40

45

50

55

60

65

14

based on an assumption that the first plurality of objects
were placed in a single execution region;

instructions for generating a first scatter loading file for the

first version of the executable file, the first scatter load-
ing file ordering the first plurality of objects using the
first linker order;

instructions for linking the first plurality of objects using

the first scatter loading file to create the first version of
the executable file;

instructions for determining a second linker order for a

second plurality of objects in a plurality of execution
regions for a second version of an executable file, the
second linker order indicating an inner ordering
imposed by a linker on the second plurality of objects,
wherein the second linker order is based on an assump-
tion that the second plurality of objects were placed in a
single execution region;

instructions for generating a second scatter loading file for

the second version of the executable file, the second
scatter loading file ordering the second plurality of
objects using the second linker order; and

instructions for linking the second plurality of objects

using the second scatter loading file to create the second
version of the executable file.

6. The non-transitory machine-readable storage medium of
claim 5, further comprising:

instructions for generating an update package, the update

package containing instructions to generate the second
version of the executable file using the first version of the
executable file.

7. The non-transitory machine-readable storage medium of
claim 6, wherein the first version of the executable file and the
second version of the executable file each correspond to a
respective firmware version of a client device.

8. The non-transitory machine-readable storage medium of
claim 5, wherein the instructions for determining the first
linker order comprise:

instructions for parsing each of the first plurality of objects

to identify any object libraries referenced by the first
plurality of objects;

instructions for parsing each of the referenced object librar-

ies to identify any library objects referenced by the first
plurality of objects; and

instructions for outputting the first linker order based on a

determined ordering of the first plurality of objects and
the library objects referenced by the first plurality of
objects.

9. The non-transitory machine-readable storage medium of
claim 8, wherein the instructions for outputting the first linker
order determine the ordering based on object ordering prop-
erties of a particular linker to be used by the instructions for
linking the first plurality of objects.

10. The non-transitory machine-readable storage medium
of claim 5, wherein the instructions for generating the first
scatter loading file comprise:

instructions for determining a size of each object of the

plurality of objects; and

instructions for organizing the plurality of objects into

execution regions based on a maximum execution
region size and the size of each object, wherein each
execution region orders objects according to the first
linker order.

11. The non-transitory machine-readable storage medium
of claim 5, wherein the first scatter loading file explicitly lists
every object included in or referenced by the first plurality of
objects using the first linker order.

US 9,152,438 B2

15
12. A computing device comprising:
a processor; and
amachine-readable storage medium encoded with instruc-
tions executable by the processor, the machine-readable
storage medium comprising:
instructions for determining a first linker order for a first
plurality of objects in a plurality of execution regions for
a first version of an executable file, the first linker order
specifying a linker inner ordering, wherein the first
linker order is based on an assumption that the first
plurality of objects were placed in a single execution
region,
instructions for generating a first scatter loading file for
the first version of the executable file, the first scatter
loading file ordering objects using an order specified
in the first linker order,
instructions for linking the first plurality of objects for
the first version of the executable file using the first
scatter loading file to create the first version of the
executable file,
instructions for determining a second linker order for a
second plurality of objects in a plurality of execution
regions for a second version of an executable file, the
second linker order specifying a linker inner ordering,
wherein the second linker order is based on an assump-
tion that the second plurality of objects were placed in a
single execution region,
instructions for generating a second scatter loading file
for the second version of the executable file, the sec-

10

15

20

25

16

ond scatter loading file ordering objects using an
order specified in the second linker order,
instructions for linking the second plurality of objects
for the second version of the executable file using the
second scatter loading file to create the second version
of the executable file, and
instructions for generating an update package, the
update package containing instructions to generate a
subsequent version of the executable file using a pre-
vious version of the executable file.
13. The computing device of claim 12, wherein:
when the subsequent version of the executable file removes
a particular object from the previous version of the
executable file, the respective linker order for the subse-
quent version is the same as the respective linker order
for the previous version with the particular object
removed.
14. The computing device of claim 12, wherein:
when the subsequent version of the executable file adds a
particular object to the previous version of the execut-
able file, the respective linker order for the subsequent
version is the same as the respective linker order for the
previous version with the particular object inserted.
15. The computing device of claim 12, wherein:
when the objects included in the subsequent version of the
executable file and the previous version of the execut-
able file are the same, the respective linker order is
identical for both versions.

#* #* #* #* #*

